An S-type singular value inclusion set for rectangular tensors
نویسندگان
چکیده
منابع مشابه
An S-type singular value inclusion set for rectangular tensors
An S-type singular value inclusion set for rectangular tensors is given. Based on the set, new upper and lower bounds for the largest singular value of nonnegative rectangular tensors are obtained and proved to be sharper than some existing results. Numerical examples are given to verify the theoretical results.
متن کاملA new S-type upper bound for the largest singular value of nonnegative rectangular tensors
By breaking [Formula: see text] into disjoint subsets S and its complement, a new S-type upper bound for the largest singular value of nonnegative rectangular tensors is given and proved to be better than some existing ones. Numerical examples are given to verify the theoretical results.
متن کاملA new S-type eigenvalue inclusion set for tensors and its applications
In this paper, a new S-type eigenvalue localization set for a tensor is derived by dividing [Formula: see text] into disjoint subsets S and its complement. It is proved that this new set is sharper than those presented by Qi (J. Symb. Comput. 40:1302-1324, 2005), Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014) and Li et al. (Linear Algebra Appl. 481:36-53, 2015). As applications of the r...
متن کاملTwo S-type Z-eigenvalue inclusion sets for tensors
In this paper, we present two S-type Z-eigenvalue inclusion sets involved with a nonempty proper subset S of N for general tensors. It is shown that the new sets are tighter than those provided by Wang et al. (Discrete Contin. Dyn. Syst., Ser. B 22(1):187-198, 2017). Furthermore, we obtain upper bounds for the spectral radius of weakly symmetric nonnegative tensors, which are sharper than exist...
متن کاملMultilinear Singular Value Decomposition for Structured Tensors
The Higher-Order SVD (HOSVD) is a generalization of the Singular Value Decomposition (SVD) to higher-order tensors (i.e. arrays with more than two indices) and plays an important role in various domains. Unfortunately, this decomposition is computationally demanding. Indeed, the HOSVD of a third-order tensor involves the computation of the SVD of three matrices, which are referred to as "modes"...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2017
ISSN: 1029-242X
DOI: 10.1186/s13660-017-1421-0