An S-type singular value inclusion set for rectangular tensors

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An S-type singular value inclusion set for rectangular tensors

An S-type singular value inclusion set for rectangular tensors is given. Based on the set, new upper and lower bounds for the largest singular value of nonnegative rectangular tensors are obtained and proved to be sharper than some existing results. Numerical examples are given to verify the theoretical results.

متن کامل

A new S-type upper bound for the largest singular value of nonnegative rectangular tensors

By breaking [Formula: see text] into disjoint subsets S and its complement, a new S-type upper bound for the largest singular value of nonnegative rectangular tensors is given and proved to be better than some existing ones. Numerical examples are given to verify the theoretical results.

متن کامل

A new S-type eigenvalue inclusion set for tensors and its applications

In this paper, a new S-type eigenvalue localization set for a tensor is derived by dividing [Formula: see text] into disjoint subsets S and its complement. It is proved that this new set is sharper than those presented by Qi (J. Symb. Comput. 40:1302-1324, 2005), Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014) and Li et al. (Linear Algebra Appl. 481:36-53, 2015). As applications of the r...

متن کامل

Two S-type Z-eigenvalue inclusion sets for tensors

In this paper, we present two S-type Z-eigenvalue inclusion sets involved with a nonempty proper subset S of N for general tensors. It is shown that the new sets are tighter than those provided by Wang et al. (Discrete Contin. Dyn. Syst., Ser. B 22(1):187-198, 2017). Furthermore, we obtain upper bounds for the spectral radius of weakly symmetric nonnegative tensors, which are sharper than exist...

متن کامل

Multilinear Singular Value Decomposition for Structured Tensors

The Higher-Order SVD (HOSVD) is a generalization of the Singular Value Decomposition (SVD) to higher-order tensors (i.e. arrays with more than two indices) and plays an important role in various domains. Unfortunately, this decomposition is computationally demanding. Indeed, the HOSVD of a third-order tensor involves the computation of the SVD of three matrices, which are referred to as "modes"...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2017

ISSN: 1029-242X

DOI: 10.1186/s13660-017-1421-0